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ABSTRACT
Medical Image Segmentation (MIS), particularly for brain tumours
such as intracranial meningiomas, is critical for accurate diagno-
sis and treatment planning. The Segment Anything Model (SAM),
while effective in natural image segmentation, faces challenges
when applied to medical imaging due to the need to convert 3D
grayscale MRIs into 2D RGB slices, leading to information loss.
This paper explores fine-tuning SAM with a slice-by-slice approach
and integrating it with a U-Net architecture to improve segmen-
tation accuracy. We present a framework, U-SAM, that combines
the strengths of both models. Our results demonstrate that while
the fine-tuned SAM shows notable improvements, the integrated
U-SAM framework offers potential advancements in segmentation
precision, particularly when combining predictions from both mod-
els.

KEYWORDS
Computer Vision, Deep Learning, Medical Image Segmentation,
Tumour Segmentation, Segment Anything Model

1 INTRODUCTION
Medical Image Segmentation (MIS) plays a pivotal role in modern
healthcare by enabling the accurate delineation of anatomical struc-
tures within medical images. This level of precision is essential
for effective diagnosis, treatment planning, and ongoing disease
monitoring [30]. Traditional segmentation methods, often rely on
manual processes that are time-consuming and prone to human
error [19].

Deep Learning models, such as the Segment Anything Model
(SAM), offer a promising alternative, demonstrating impressive seg-
mentation capabilities in various domains [23]. However, SAM was
designed primarily for 2D natural images, which poses significant
challenges when applied to 3D medical imaging tasks, particularly
those involving brain Magnetic Resonance Imaging (MRI) scans.
The primary challenges include domain-specific differences such
as lower contrast, higher noise levels, and the intricate nature of
deep anatomical structures [9, 16, 30].

Brain MRIs are crucial for the visualisation of brain structures,
which is essential for diagnosing and treating intracranial menin-
giomas, the most prevalent type of brain tumour in adults [22, 24].
While meningiomas are frequently benign, their potential for ag-
gressive behaviour underscores the need for precise segmentation
to support effective treatment planning [18, 32].

The goal of this research is to adapt SAM for the task of 3D brain
MRI segmentation by fine-tuning it on the 2023 BraTS Intracranial
Meningioma Challenge dataset [24]. This adaptation involves ad-
dressing challenges to effectively leveraging SAM’s capabilities to

improve its performance in medical imaging tasks. Additionally,
we explore whether integrating SAM with a U-Net architecture—a
model renowned for its success in biomedical image segmenta-
tion [39]—can enhance its performance in segmenting intracranial
meningiomas, relative to baseline SAM.

The design of our approach involves a multi-faceted strategy.
Initially, we fine-tune SAM on the dataset to adapt its parameters
and improve its performance in 3D medical imaging. We then in-
tegrate SAM with U-Net to leverage the strengths of both models.
Each step of the design process is carefully justified based on the
unique challenges posed by 3D MRI data, the capabilities of SAM
and U-Net, and insights gained from existing efforts. The design
decision to integrate these models is driven by their complementary
strengths—SAM’s broad applicability and U-Net’s proven success
in biomedical segmentation. The ingenuity in our approach lies in
effectively combining these models to tackle the specific challenges
of intracranial meningioma segmentation.

The remainder of this paper is structured as follows: Section
2 and Section 3 provide a comprehensive overview of the back-
ground and related work of the field, including existing attempts to
adapt SAM to MIS. Section 4 details our chosen dataset and the pro-
posed modifications for integrating SAM with U-Net [39]. Section
5 presents and discusses our experimental results, comparing our
modified model’s performance with the baseline SAM, followed by
a summary in Section 6. Finally, Section Section 7 concludes the
paper with a discussion of our findings and potential future work
in this area. Detailed visualisations are included in the Appendices,
which provide further insight into the performance and behaviour
of the models discussed.

2 BACKGROUND
This section provides an overview of the evolving landscape of
image segmentation, from traditional Machine Learning methods
to advanced Deep Learning techniques that have transformed MIS,
such as U-Net and Vision Transformers. By highlighting the shift
from hand-crafted features to automated feature learning, we con-
textualise the advancements shaping current models, such as SAM,
and discuss their relevance to MIS.

2.1 Machine Learning
Machine Learning has been foundational in medical imaging, but
is limited by its reliance on hand-crafted features. Classical ap-
proaches, such as simple thresholding [20] ormore advanced clustering-
based algorithms [14], often struggle with the complexity of medi-
cal data, particularly in effectively capturing the inherent intricate
patterns.
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Figure 1: The SAMArchitecture, with Image Encoder, Prompt
Encoder, and Mask Decoder [23].

2.2 Deep Learning
Deep Learning architectures, often consisting of encoder-decoder
structures with millions of parameters, have revolutionised image
segmentation by automatically extracting meaningful features to
learn and understand the complex relationships within image data.

In particular, Convolutional Neural Networks (CNNs) have be-
come significantly influential [5]. They leverage deeply layered
architectures to learn hierarchical representations of images, en-
abling the identification of complex patterns that are critical in
medical imaging. Their ability to accurately capture spatial rela-
tionships has made them the backbone of many medical imaging
systems [5]. However, CNNs are inherently limited by their local re-
ceptive fields, which restrict their capacity to capture global image
context.

One of the most impactful architectures in this domain is U-Net
[39], known for its symmetric design. U-Net consists of a contract-
ing path to capture context and a symmetric expanding path that
enables precise localisation. This architecture has been extensively
applied to various medical imaging tasks, including brain tumour
segmentation, because of its robustness and accuracy in handling
the intricate details of medical images.

2.3 Visual Transformers
Transformers, originally developed for Natural Language Process-
ing, have emerged as a powerful alternative to CNNs in image
processing. Vision Transformers (ViTs) [10], utilising self-attention
mechanisms, can capture global image dependencies, making them
highly effective for tasks requiring broader context. This advan-
tage, not provided with CNNs as they rely on local convolutional
operations to process images [5], has translated well to MIS, where
capturing entire anatomical structures is critical [10].

The Segment Anything Model (SAM), introduced by Kirillov
et al. in 2023 [23], represents a significant advancement in image
segmentation. As seen in Figure 1, it builds upon the ViT architec-
ture, consisting of three components: an image encoder, a prompt
encoder, and a mask decoder.

The image encoder processes the input image into a high-dimensional
image embedding space using a Vision Transformer (ViT) pre-
trained with the Masked Auto-Encoder (MAE) training scheme
[15]. The ViT efficiently captures and extracts essential features and
relationships within the image. Meta AI provides three pre-trained
SAM models corresponding to the three ViT sizes (ViT-Base, ViT-
Large, and ViT-Huge) [10]. However, their research suggests that

using larger ViT models as the backbone of SAM’s image encoder
offers only marginal improvements in accuracy, while significantly
increasing computational demands [23].

SAM’s prompt encoder translates user prompts into internal
representations that the model can understand. These prompts
can be in the form of points (positive or negative, to indicate the
foreground and background of the target respectively), bounding
boxes (to surround the spatial region of the target object), or even
textual descriptions. SAM also offers a special ‘Everything’ mode,
where the model segments all potential objects in the entire image
[23].

The mask decoder iteratively combines the image embeddings
from the image encoder and the prompt embeddings from the
prompt encoder to generate segmentation masks. This process
reflects the input image’s visual features and the user’s specified
target through the prompt. The decoder itself is designed as a
modified Transformer decoder block, utilising techniques such as
prompt self-attention, which allows the prompt embeddings to
interact and refine their representations, and cross-attention in
two directions, which facilitates information exchange between the
image embedding and the prompt embeddings [23].

This design allows SAM to perform zero-shot learning across
many images without requiring task-specific training, generating
accurate masks without exposing explicit object-level data. While
SAM’s versatility is impressive, particularly between natural do-
mains [21, 40], its application to medical images, especially 3D
medical imaging, presents unique challenges, even with its zero-
shot learning. Medical images often involve lower contrast, higher
noise levels, and 3D anatomical structures, which complicates the
direct application of SAM’s original design [9, 16].

3 RELATEDWORK
Research on adapting SAM for medical imaging has largely focused
on addressing its limitations in handling 3D data and fine-tuning
prompt mechanisms for more precise segmentation. This section
categorises key contributions, including modifications to handle 3D
data, advancements in prompting methods, fine-tuning approaches,
and existing integration efforts.

3.1 MedSAM
MedSAM [30] was one of the earliest contributions to the adap-
tation of SAM for medical imaging. By tailoring SAM for many
medical domains, MedSAM aimed to create a universal model capa-
ble of handling different medical imaging tasks. A key innovation
was the use of bounding box prompts and the handling of 3D data
through image slicing. This method involved slicing 3D volumes
into 2D sections and adopting a full fine-tuning approach. The
model demonstrated improved performance across various cancer
imaging modalities, particularly in accurately capturing the intri-
cate details of tumour boundaries and accommodating the varying
nature of medical datasets. MedSAM’s success laid the foundation
for subsequent research, influencing many later adaptations.

3.2 3D to 2D Approaches
Many approaches to adapting SAM for 3D MIS involve tackling the
inherent complexity of 3D data. A common strategy has been to
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convert 3D volumes into 2D slices—a technique known as slice-by-
slice segmentation, as seen in MedSAM [30]. While this approach
simplifies the application of SAM to 3D data, it can lead to the loss
of critical contextual information inherent in 3D structures [42].

To address this, several studies have investigated advanced meth-
ods that adapt SAM’s input to process complete 3D volumes. For
example, certain adaptations override SAM’s 2D requirement by
incorporating a 3D encoder and slicer, such as SAM3D [3], MA-
SAM [6], and 3DSAM-Adapter [13]. More minimally, SlideSAM [36]
addressed the limitations of slice-by-slice segmentation by utilising
a windowing approach to capture contextual information.

Although this approach allows SAM to process 3D data more
effectively, it requires substantial computational resources and re-
mains a complex area of research [6]. While our research primarily
focuses on tuning SAM’s ability to handle 2D slices, understanding
these 3D approaches is important for contextualising the broader
challenges in the field.

3.3 Prompting Method Approaches
In adapting SAM for medical imaging, the choice of prompting
method is a critical factor. Most approaches have employed man-
ual prompts, such as bounding boxes or points, to guide the seg-
mentation process. While effective, these methods require human
intervention, which can be a bottleneck in clinical settings where
medical expertise is needed to provide accurate prompts [42].

Ma et al. [30] highlighted the limitations of point-based prompt-
ing, noting that it often leads to ambiguity and may require multiple
iterations to achieve accurate segmentation. On the other hand,
bounding box prompts are argued to be more effective in specify-
ing the target object with minimal human intervention. However,
even bounding boxes can struggle with complex structures, such
as vessel-like branches, where enclosing the entire structure might
inadvertently include irrelevant regions due to the inherent shape
of the target [42].

In contrast, SAM’s fully automated "Everything" promptingmode,
which segments all potential objects within an image, eliminates
human input but may lack the precision required for specific medi-
cal tasks. This mode can result in segmentations that are too broad,
missing the focused regions of interest that medical professionals
typically require.

Other prompting methods, such as text prompts, have been ex-
plored in studies like MedSAM [30], which developed a version
incorporating text-based cues. However, text prompting is less rel-
evant for clinical use, where accurate spatial localisation is more
critical than abstract descriptive cues. Our research focuses on us-
ing bounding box prompts to optimise SAM’s performance in brain
MRI segmentation.

3.4 Fine-Tuning Approaches
One of the primary methods for adapting SAM to medical imaging
is full fine-tuning, where all components of SAM—image encoder,
prompt encoder, and mask decoder—are retrained on a medical
dataset. This approach leverages the pre-trained weights of SAM
as a foundation, allowing the model to adapt more effectively to
the nuances of medical images.

For instance, SkinSAM [17], fully fine-tuned SAM for skin can-
cer segmentation. Their model achieved a notable performance
improvement, with accuracy scores increasing from 81% to 89%, par-
ticularly excelling in segmenting vascular lesions. Similarly, Polyp-
SAM [27], fully fine-tuned SAM for polyp segmentation, yield-
ing consistent accuracy scores above 88% across multiple datasets,
showcasing the effectiveness of this approach in diverse medical
contexts. These examples demonstrate that full fine-tuning can
achieve high accuracy; however, this approach often requires signif-
icant computational resources and extended training times, which
can be a limitation in practical applications.

To address the challenges of computational cost and training
time inherent in full fine-tuning, some researchers have explored
Parameter-Efficient Fine-Tuning (PEFT) methods. PEFT approaches
selectively fine-tune only a subset of the parameters of SAM, thereby
balancing the benefits of pre-trained knowledge with the need to
adapt to medical images [11]. MedSAM [30] fine-tuned SAM’s im-
age encoder and mask decoder while keeping the prompt encoder
frozen. This method focused on adapting SAM to medical data
without altering its core ability to understand prompts, resulting
in a model that maintained strong generalisability while achieving
high accuracy. This popular PEFT-SAM strategy not only reduces
computational burden but also preserves the inherent versatility of
SAM, allowing it to be more easily applied across various medical
domains [11, 30, 33].

3.5 Framework Modification Approaches
Another significant direction in adapting SAM to the medical do-
main involves modifying its framework or integrating it with other
established architectures [42].

For instance, nnSAM, proposed by Li et al. [28], integrates SAM
with nnU-Net [19], a modern and highly flexible segmentation
framework. Integrating SAM as a plug-and-play module within
the nnU-Net architecture, nnSAM delivers superior segmentation
accuracy over standalone SAM or nnU-Net. This integration high-
lights how SAM’s strengths in general segmentation can be com-
plemented by nnU-Net’s specialised handling of medical images.

Similarly, ClipSAM [26] incorporated SAM with CLIP (Con-
trastive Language-Image Pre-training), a model developed by Ope-
nAI that aligns images with text descriptions [37], enabling power-
ful zero-shot image recognition and multi-modal capabilities. This
integration enhances SAM’s versatility in handling various text-
prompted segmentation tasks, positioning it as a robust tool for
multi-modal medical image analysis [26].

Another innovative approach is SAMUS, developed by Lin et al.
[29]. It introduces a parallel CNN branch that injects local features
directly into the image encoder of SAM. This enhancement enriches
the feature representation, making SAMUS particularly well-suited
for handling smaller input sizes, which are common in medical
imaging. SAMUS has been shown to outperform bothMedSAM [30]
and other adaptations across various medical imaging modalities,
while significantly reducing computational costs [29].

However, while effective, these framework modifications often
introduce additional complexity, which may affect their ease of
deployment in real-world healthcare settings [42].
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Despite these advancements, the adaptation of SAM for MIS is
still evolving. Although many new studies have emerged during
the timeline of our research, several challenges persist in adapting
SAM for 3D brain MRI segmentation. Most notably, the transition
from 3D to 2D slicing can result in the loss of critical contextual
information, affecting the accuracy of the segmentation. Further-
more, while fine-tuning SAM’s mask decoder has shown promise,
it is still resource-intensive and may not always yield significant
improvements. In addition, many of the current adaptations require
extensive computational resources, which limits their accessibility
and scalability.

Our study aims to contribute to this growing research by inves-
tigating an approach to adapt SAM for intracranial meningioma
segmentation in brain MRI scans. We seek to address the existing
gaps by comparing the performance of our modified models to the
original SAM model, intending to achieve marginal improvements
in accuracy and efficiency.

4 DESIGN AND IMPLEMENTATION
This section outlines the experimental setup, detailing the dataset,
pre-processing methods, and modified model architectures. All
design choices and methodologies are presented to ensure repro-
ducibility and robustness in evaluating our proposedU-SAM-Combo
and U1-SAM2 architectures for intracranial meningioma segmenta-
tion. The rationale behind our approaches is informed by the prior
work discussed in Section 2 and Section 3. Many of these design
choices were influenced by Kurtlab’s BraTS 2023 submission [38],
which provided valuable guidance in refining our strategies and
navigating the associated challenges.

4.1 Data Collection
While many high-quality, annotated MRI datasets exist [35, 41], our
research utilised the BraTS 2023 Intracranial Meningioma dataset,
which includes MRI scans across four different types of modalities:
T1Weighted Native (t1n), T1-Contrast Enhanced (t1c), T2-Weighted
Fluid Attenuated Inversion Recovery (t2f), and T2-Weighted (t2w)
[24]. These scans, depicted in Figure 2, capture the same anatomical
structures using different imaging protocols, each providing dis-
tinct tissue contrasts. For instance, t1c enhances tumour visibility,
while t2w is highly effective in defining fluid-filled regions. This
variety is crucial for segmentation, as it provides complementary
perspectives of brain anatomy, enabling the model to develop a
more comprehensive understanding of the tumour region.

The original dataset employs a four-class segmentation system
(0: Background/Healthy Tissue, 1: Non-Enhancing Tumour Core, 2:
Enhancing Tumour, 3: Surrounding FLAIR Hyperintensity). For our
study, we adopted a simplified binary encoding (0: Non-Tumour, 1:
Intracranial Meningioma). This simplification, visualised in Figure
3, streamlined the design of our segmentation process and allowed
our models to focus on the primary objective of identifying and
delineating the whole tumour region.

4.2 Pre-processing
The BraTS dataset underwent initial pre-processing by the chal-
lenge organisers, including DICOM to NIfTI format (.nii.gz) conver-
sion, modality co-registration to the SRI24 atlas space, and isotropic

Figure 2: The 4 different scans in our dataset per sample: t1n,
t1c, t2f, and t2w [24].

Figure 3: Original Class Segmentation Mask (left) and the
corresponding Binary Mask (right). The Four-Class Sys-
tem distinguishes between four types of regions: back-
ground/healthy tissue (black), non-enhancing tumour core
(yellow), enhancing tumour (red), and surrounding FLAIR
hyperintensity (green). The binary mask simplifies classifica-
tion to just two categories: non-tumour (black) and tumour
(white) [24]

resampling to 1 mm3 voxel size. Standard skull-stripping was per-
formed to anonymise the samples by removing non-brain tissues
and protecting patient privacy [7, 24, 25].

Additional pre-processing involved center-cropping to prioritise
the brain region, reducing the inclusion of irrelevant background
information. We then applied Z-Score Normalisation and Rescaling
using sci-kit-learn’s Exposure library to standardise intensity values
across scans and mitigate any potential biases introduced by MRI
machine calibration variations.

Since SAM operates on 2D RGB images, we converted grayscale
slices to RGB, resizing as needed, and processed each slice individ-
ually due to SAM’s 2D nature.

As a final step to prompt SAM for accurate segmentation, we
generated a bounding box for each slice, as seen in Algorithm 1.
This bounding box was defined by calculating the smallest rectan-
gular region that completely encloses the entire tumour volume in
the ground truth segmentation. For multiple disjoint tumours, the
bounding box included all tumour regions, ensuring SAM received
a comprehensive region for segmentation. This approach facilitated
accurate tumour delineation across all MRI modalities. However,
with this design, large bounding boxes could occur with very distant
disjoint tumours, suggesting future research into multiple prompt
inputs, where each disjoint tumour would have its own bounding
box.

The design decision to compare the entire ground truth segmen-
tation with SAM’s predicted segmentation mask, assembled from
per-slice predictions, was crucial. One might argue that comparing
only the bounding box portion with the corresponding section in
the ground truth is more accurate. However, SAM operates with a
degree of human error tolerance, with a tendency to predict regions
outside the bounding box prompt. Therefore, comparing the entire
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Algorithm 1: Bounding Box Generation
Input: 𝑠𝑒𝑔_𝑚𝑎𝑠𝑘 : Segmentation mask,𝑚: Margin
Output: Bounding box coordinates or None
𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠 ← FindContours(𝑠𝑒𝑔_𝑚𝑎𝑠𝑘);
if 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠 is empty then

return None;
end
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 ) ← 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠 [0];
foreach 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 in 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠 [1 :] do
(𝑥,𝑦,𝑤,ℎ) ← BoundingRect(𝑐𝑜𝑛𝑡𝑜𝑢𝑟 );
𝑥𝑚𝑖𝑛 ← min(𝑥𝑚𝑖𝑛, 𝑥);
𝑦𝑚𝑖𝑛 ← min(𝑦𝑚𝑖𝑛, 𝑦);
𝑥𝑚𝑎𝑥 ← max(𝑥𝑚𝑎𝑥 , 𝑥 +𝑤);
𝑦𝑚𝑎𝑥 ← max(𝑦𝑚𝑎𝑥 , 𝑦 + ℎ);

end
𝑥𝑚𝑖𝑛 ← max(0, 𝑥𝑚𝑖𝑛 −𝑚);
𝑦𝑚𝑖𝑛 ← max(0, 𝑦𝑚𝑖𝑛 −𝑚);
𝑥𝑚𝑎𝑥 ← min(width of 𝑠𝑒𝑔_𝑚𝑎𝑠𝑘, 𝑥𝑚𝑎𝑥 +𝑚);
𝑦𝑚𝑎𝑥 ← min(height of 𝑠𝑒𝑔_𝑚𝑎𝑠𝑘,𝑦𝑚𝑎𝑥 +𝑚);
return (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 );

3D ground truth segmentation mask with SAM’s predicted segmen-
tation mask was necessary, and straightforward as they share the
same dimensional shape.

The dataset, consisting of 1000 samples (4000 scans), was split
into training (68%), validation (20%), and testing (12%) sets, adher-
ing to standard practices in medical image analysis. However, the
official BraTS 2023 testing set was unavailable due to competition
restrictions; hence, our test set was derived from the available train-
ing data.

4.3 Handling 3D to 2D
4.3.1 Multi-Scan Per Sample. EachMRI modality was processed
independently by SAM, generating separate predictions. The bound-
ing box prompt, derived from the ground truth segmentation, was
consistently applied across all modalities.

The final predicted mask for each sample was obtained by com-
bining these predictions using a union operation, ensuring maximal
tumour coverage and leveraging the unique information provided
by each scan type. This approach aligns with multi-modal fusion
techniques in medical imaging, where integrating different modali-
ties enhances segmentation accuracy.

4.3.2 Multi-Slice Per Sample. During segmentation, each sam-
ple’s 3D MRI volume was processed slice-by-slice in the axial plane,
chosen for its clinical relevance and ease of implementation. This
plane is also the most intuitive from a non-medical perspective, as
shown in Figure 4.

During validation and testing, each slice was processed individ-
ually, with the slice-by-slice results combined to produce a final 3D
segmentation mask.

During the training phase, processing each slice resulted in sig-
nificant time and memory limitations. This issue likely stemmed
from SAM’s input image enlargements during unwrapping and

Figure 4: The different planes of the brain [8].

persisted despite meticulous memory management efforts. To mit-
igate this, we explored various slice-selection strategies. Initially,
we employed a central slice method, choosing the slice located at
the midpoint of each MRI sample. However, we found that this ap-
proach reduced the amount of usable data, as not all central slices
contained tumours. Only 386 out of 1000 samples were viable.

We then explored the max slice approach, which targeted the
slice with the largest cross-sectional area of the tumour. We hy-
pothesised that this would improve performance on large tumour
instances. However, training on a single slice did not enhance seg-
mentation accuracy because SAM lacked the information to gener-
alise effectively, resulting in suboptimal learning outcomes.

We also considered a "4 Slice" Method, selecting slices repre-
senting 100%, 75%, 50%, and 25% of the tumour’s maximum area.
However, concerns about potential bias led us to reject this ap-
proach, as it likely would not generalise well across diverse tumour
presentations.

Ultimately, we opted to train on every second slice per sample,
which balanced training time and memory use. This completely
avoided memory constraints, while still providing SAM with a
diverse set of tumour examples, leading to better overall learning.

4.4 PEFT-SAM Implementation
Our Parameter-Efficient Fine-Tuning (PEFT) approach involved
fine-tuning only the mask decoder of SAM, allowing it to adapt to
the specific characteristics of our MRI data while minimising the
risk of overfitting. This process was implemented using PyTorch
[34].

We employed an exponentially decaying learning rate sched-
ule and the Adam optimiser, known for its efficiency with sparse
gradients, to manage the training process effectively.

Hyperparameter tuning was conducted using Optuna [1], sys-
tematically exploring the impact of various initial learning rates
and optimisers, among other parameters. Initially, Dice Loss was
used as the objective function; however, instability during training
prompted a switch to a weighted combination of Mean-Squared
Error (MSE) and Cross-Entropy Loss for more stable convergence.

We evaluated various loss computation strategies across four
MRImodalities, including summing,maximum, andminimummeth-
ods. Ultimately, we made the design decision to compute the loss on
the unionised 3D predicted segmentation mask, which incorporated
all available information per sample, as this approach yielded the
best results.

In addition, data shuffling and loaders were meticulously de-
signed to ensure a balanced distribution of samples across training
epochs. We initially introduced a difficulty-based categorisation of
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tumours to balance sample difficulty per epoch, inspired by curricu-
lum learning. However, this measure was found to be redundant as
tumour difficulty averaged out over training.

We opted to use SAM’s single-output, despite its reported lower
performance compared to the multi-output approach [23]. This
design decision was made to avoid the risk of SAM consistently
segmenting only the most visible part of the tumour, which is often
the core. We aimed to focus on segmenting the entire tumour, not
just its most apparent part, as using the most confident mask could
limit accuracy and fail to provide a representative segmentation.
Preliminary checks confirmed that SAM’s single-output with point
prompts, which is inherently ambiguous, led to incomplete tumour
segmentation. Thus, we employed bounding boxes to reduce ambi-
guity and better capture the entire meningioma. Future research
could explore the performance benefits of SAM’s multi-output ap-
proach.

4.5 Framework Modification
To address the Research Question of whether combining different
segmentation frameworks can improve performance, we integrated
SAM with a 3D U-Net architecture. This hybrid approach combines
SAM’s Vision Transformer (ViT) [10], known for its robust fea-
ture extraction in 2D, with U-Net’s CNN-based architecture [5, 39],
which excels at capturing detailed 3D information. By merging
SAM’s efficient 2D segmentation capabilities with U-Net’s advanced
3D volumetric processing, we aimed to harness the strengths of
both frameworks to enhance overall segmentation performance.

For our U-Net architecture [39], we utilised a model inspired by
Futrega et al.’s (NVIDIA) Optimised U-Net [12], which differs from
Vanilla U-Net by incorporating deep supervision with additional
decoder levels closer to the output, enhancing gradient flow and
potentially improving segmentation accuracy.

While PEFT-SAM was trained slice-by-slice, U-Net processed
full 3D volumes, leveraging the spatial context of the entire volume.
Unlike SAM, which generates consistent outputs for the same in-
put, U-Net predictions can vary. U-Net was trained with the same
hyperparameters and loss function strategy as described in Section
4.4, except all parameters were updated during training. This differs
from PEFT-SAM, where only the mask decoder was fine-tuned.

A significant difference between the architectures is the prompt-
ingmethod. SAMhas a natural advantage by being limited to predict
only on slices within the tumour volume due to the bounding box
prompt. To ensure a fair comparison, we adjusted the U-Net segmen-
tation process to consider the tumour volume’s start and end points
within the axial plane, emulating the bounding box prompt used
by SAM. This adjustment ensured a fairer comparison, although
future research should investigate the potential of prompting U-Net
with a bounding box as an additional input channel.

4.5.1 U-SAM-Combo. As illustrated in Figure 5, U-SAM-Combo
was designed to harness the complementary strengths of PEFT-SAM
and 3D U-Net. The input MRI was independently processed by both
models, and their binary mask outputs were merged to produce the
final segmentation mask. We explored three combination strategies.

First, the union approach, where the final segmentation mask is
the union of PEFT-SAM andU-Net output. This maximised coverage
by simply merging the predictions of both models.

Figure 5: Architecture of U-SAM-Combo.

Figure 6: Architecture of U1-SAM2.

Secondly, the intersection strategy ensured precise segmentation
by focusing only on regions where both model’s predictions were
in agreement.

Lastly, we investigated a weighted method. This required a pre-
liminary accuracy evaluation of each model’s performance with the
ground truth segmentation mask to determine the relative perfor-
mance of PEFT-SAM and U-Net per sample. Thus, we acknowledge
that this approach is more research-focused and does not yet have
immediate clinical applicability.

4.5.2 U1-SAM2. As shown in Figure 6, the U1-SAM2 architecture
employs a sequential approach where the MRI is first processed
by U-Net to generate an initial prediction. This prediction then
serves as an input, guidance mask for PEFT-SAM, refining the
segmentation based on U-Net’s output. The final prediction from
PEFT-SAM, guided by the U-Net mask, is used for evaluation. This
approach combines SAM’s precise segmentation capabilities with
the broader contextual understanding provided by U-Net

To achieve this, SAM’s mask_input parameter in its predict
methodwas utilised for integration [23]. Although under-documented,
this feature was crucial for combining U-Net’s output with SAM.
Notably, SAM expects input masks containing unthresholded logits
(floating-point confidence values), not binary masks. Tools from
MicroSAM [2] were adapted to convert U-Net’s binary output into
logits compatible with SAM, facilitating seamless integration of the
two models.
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5 RESULTS AND DISCUSSION
The Dice Similarity Coefficient (DSC) was chosen as our primary
evaluation metric due to its effectiveness in measuring the accuracy
of tumour delineation, which is crucial given the variable size and
shape of tumours. The DSC quantifies the overlap between the
predicted segmentation and the ground truth, offering a robust
measure of segmentation performance. The formula used is:

DSC =
2 × |𝐴 ∩ 𝐵 |
|𝐴| + |𝐵 | (1)

where A is the predicted segmentation and B is the ground truth.
The DSC ranges from 0 (no overlap) to 1 (perfect overlap).

For our evaluations, we utilised MONAI’s implementation of
the DiceLoss metric, which provides a reliable and standardised
approach for calculating the DSC and is widely employed in medical
imaging applications [4]

5.1 Vanilla SAM Baseline
Our evaluation of Vanilla SAM yielded an overall DSC of approxi-
mately 0.84 across various MRI modalities (Table 1). This consis-
tency across modalities, particularly with t1c images achieving the
highest score of 0.851, highlights SAM’s robustness despite being
primarily trained on non-medical data.

The visualisations in Appendix A, Figure 12, reinforce these
findings. Despite the model’s limited training on medical data, the
outputs for each scan type demonstrate that Vanilla SAM performs
well, with predictions generally aligning closely with the ground
truth. This observation is particularly evident in the t1c images,
where the clear visibility of tumours due to contrast enhancement
allows SAM to leverage its pre-trained capabilities effectively. Con-
versely, the performance dips in the t2w scans, where the less pro-
nounced tumour visibility challenges the model’s ability to make
accurate predictions. This variation in performance across modali-
ties is consistent with the visual feedback, highlighting the model’s
strengths and weaknesses in different imaging contexts.

This baseline result was unexpectedly high, given our assump-
tion and prior research that SAM, primarily trained on non-medical
data, would struggle with the unique challenges presented by med-
ical imaging. This suggests that SAM’s pre-trained weights have
considerable potential for zero-shot learning, even in the specialised
domain of MRI imaging. However, while the results are promising,
the model’s performance still falls short of the near-perfect accu-
racy required for clinical applications, indicating a need for further
fine-tuning.

Table 1: Vanilla SAM Testing Dice Scores across different
MRI modalities. As seen by the bold value, t1c achieved the
highest performance, which is expected due to the increased
visibility of tumours in contrast-enhanced T1-weighted im-
ages. However, the overall score remains most relevant for
generalisation.

t1c t1n t2f t2w Overall
0.851 0.809 0.834 0.807 0.841

Figure 7: PEFT-SAM Training Progression, showing the rela-
tionship between Training Loss, Validation Loss, and Valida-
tion Dice across 125 epochs. The training loss is represented
by a blue line, validation loss by orange bars, and validation
Dice score by green markers.

5.2 PEFT-SAM
Our initial attempts to fine-tune SAM were hindered by underesti-
mating the computational demands, which led to signs of under-
fitting and no significant gains in segmentation accuracy despite
extensive training. After tweaking the training scheme to the ap-
proach outlined in Section 4.4, the following results were observed:

In Figure 7, the training loss, although somewhat unstable and
challenging to interpret for clear convergence, shows improvement
from the initial training with the Dice Loss function. Despite these
improvements, our focus remains on enhancing SAM’s overall DSC
score, as observed in the graph.

However, this came with a trade-off: the performance gains
were not uniform across all scan types. Specifically, the successful
overall improvement in DSC from our training was accompanied
by a deterioration in per-scan type performance. This can be seen
in Figure 8.

Appendix A, Figure 13 provides a detailed visualisation of PEFT-
SAM’s performance across different scan types that reinforces this.
While the overall accuracy improved relative to Vanilla, the vi-
suals highlight notable variations in performance between scan
types. The deterioration of some modalities reflects the challenge
of achieving consistent accuracy. The visualisation suggests that
our PEFT-SAM, despite its overall improvement from tuning, now
struggles to maintain consistent performance across diverse scan
types. This result underscores the inherent complexity in tuning
models for diverse medical imaging data.

We attribute these variations to our model’s enhanced ability
to better identify different tumour features depending on scan
type, which varied in visibility. The model effectively became a
combination of "weak" classifiers, each specialised in certain aspects
of the tumour per scan type, leading to a stronger overall classifier
for the four scan types used. However, this dependency also limits
the generalisation of PEFT-SAM to other, unseen types of medical
data.
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Figure 8: PEFT-SAM Testing Dice for different scan types and
overall across epochs. While overall performance improves
consistently, some individual scans exhibit deterioration in
Dice scores, highlighting the challenges in achieving uniform
accuracy across different scan types.

While we had anticipated more significant improvement, the
overall 3.6% gain still represents a meaningful enhancement over
the baseline. Although the per-scan type performance deteriora-
tion was concerning, this progress was crucial for establishing a
solid foundation for our framework modification to SAM and of-
fered valuable insights into the complexities of fine-tuning SAM
for medical imaging tasks. Given these findings, we recommend a
more nuanced approach to model tuning, considering scan-specific
characteristics and potentially employing advanced techniques to
address the variability in performance. Due to time constraints, any
further fine-tuning breakthroughs were curtailed, and focus was
shifted towards the primary objective of our project: implementing
and evaluating our framework modification on SAM.

5.3 3D U-Net
Training the 3D U-Net model yielded significant improvements,
with the DSC rising from 0.60 to 0.82. This performance is compa-
rable to our Vanilla SAM model of 0.84 and underscores U-Net’s
capability to handle 3D volumes and multiple channels effectively.
The progression of training is shown in Figure 9, demonstrating
the learning curve of the model.

Figure 10 reveals insightful contrasts between 3D U-Net and
PEFT-SAM. For example, the t1n scan type, which posed significant
challenges for Vanilla SAM (one of the least performant, as seen
in Table 1), also proved difficult for U-Net when given just that
scan type. This underscores the inherent challenges associated with
certain scan types and the limitations of both models in addressing
these challenges.

However, it is important to note that the comparison may not
be entirely fair. U-Net was trained on the full 3D volume with four
channels for each scan type, which differs significantly from PEFT-
SAM’s per-scan type predictor approach. This offers U-Net a more
comprehensive context, not necessarily to predict per scan types.

Appendix B provides visualisations that show how U-Net’s abil-
ity to process the entire 3D volume with multiple channels allows
it to achieve precise edge delineation, especially in complex regions
of the tumour. This is evident from the detailed contours and bound-
aries that U-Net can delineate, which are often more refined than
those produced by Vanilla SAM or PEFT-SAM. This precision is
critical in medical imaging, where accurate tumour delineation can
significantly impact diagnostic and treatment decisions.

The introduction of bounding box emulation into the U-Net
framework led to observable improvements in DSC, specifically a
1.2% accuracy gain. This enhancement aligns with expectations, as
the bounding box provides additional contextual information closer
to what SAM uses. However, it was not as substantial as anticipated.
We hypothesise that with full bounding box emulation, where the U-
Net has access to all the additional context provided by the bounding
box that SAM is given, further gains could be achieved. Future
research should focus on fully integrating bounding box emulation
and exploring additional improvements to enhance generalisation
across various scan types.

Figure 9: Training Progression of 3D U-Net, showing the rela-
tionship between Training Loss, Validation Loss, and Valida-
tion Dice across 125 epochs. The training loss is represented
by a blue line, validation loss by orange bars, and validation
Dice score by green markers.

Figure 10: Testing Dice comparison across different MRI
modalities and the overall for four models: U-Net without
BBox, U-Net with BBox, Vanilla SAM, and PEFT-SAM E125.
Results highlight the variation in performance between
the models for each modality, emphasising the effective-
ness of each approach in different scenarios. The PEFT-SAM
E125 model demonstrates exceptional overall performance,
whereas the Vanilla SAM excels in certain specificmodalities.
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5.4 U-SAM-Combo
The U-SAM-Combo approach demonstrates a mixed picture of the
effectiveness of combining the U-Net and SAM predictions, with
each combination strategy (Union, Intersection, and Weighted)
offering distinct strengths and limitations.

5.4.1 Union. The Union method, which aggregates predictions by
taking the union of U-Net and SAM outputs, consistently improved
upon using U-Net alone. It particularly excelled when U-Net and
SAM predictions align, suggesting that when both models agree, it
effectively consolidates their agreement for comprehensive tumour
segmentation. Notably, the peak Dice score achieved with bounding
box emulation in U-Net was 0.886 with PEFT-SAM E125, as detailed
in Table 2.

Visualisations in Appendix C illustrate the Union method’s ef-
fectiveness in leveraging both models’ strengths, enhancing overall
coverage. This improvement is especially evident with higher train-
ing epochs of SAM, indicating that the Union method benefits
from well-trained models. Thus, it proves to be a robust strategy in
scenarios where SAM predictions are reliable.

5.4.2 Intersection. The Intersectionmethod, which focuses solely
on the overlap between U-Net and SAMpredictions, did not perform
as anticipated. This approach, designed to minimise false positives
by excluding areas of disagreement, instead exacerbated errors.
able 2 shows consistently lower Dice scores with the Intersection
method versus the Union method.

Appendix C provides visuals that highlight the limitations of
the Intersection method, particularly in failing to capture signif-
icant tumour portions. This shortfall occurs because errors from
either model result in a substantial loss of true positives. The mini-
mal impact of bounding box emulation further suggests that the
Intersection method is less effective in incorporating U-Net’s en-
hancements, further underscoring the need for caution due to its
tendency to reduce the overall predicted area.

5.4.3 Weighted. The Weighted method, which integrates pre-
dictions based on model performance alignment, yielded the best
overall results. With Dice scores peaking at 0.918, as shown in Table
2, this method effectively balances the contributions of both models,
particularly excelling in handling edge cases where other methods
fall short.

Appendix C provides visual evidence of the Weighted method’s
superior performance. Its adaptive nature facilitates a more nu-
anced integration of predictions, enhancing segmentation accuracy
and detail, particularly in complex cases where individual model
predictions are inconsistent. However, it is important to note again
that the requirement for intermediate evaluation of U-Net and SAM
predictions introduces potential bias. Despite this, the superior
performance of the Weighted method suggests it is a promising
strategy for combining segmentation outputs.

5.5 U1-SAM2
The U1-SAM2 model represents an effort to enhance SAM’s predic-
tions by integrating insights from U-Net, focusing on improving
segmentation accuracy. Although it shows promise, the results
reveal several challenges.

Table 2: U-SAM-Combo Testing Dice Scores for different
PEFT-SAM versions and combination strategies, utilising
the most performant U-Net (E100). Raw U-Net and SAM Dice
scores are included for comparison. The bold values in each
row indicate the best performance for each configuration.

U-Net
w/
BBox

SAM Version U-Net Only SAM Only Union Intersection Weighted

False Vanilla 0.823 0.841 0.811 0.841 0.908
True Vanilla 0.835 0.841 0.837 0.841 0.911
False E65 0.823 0.867 0.845 0.831 0.912
True E65 0.835 0.867 0.871 0.831 0.915
False E100 0.823 0.876 0.858 0.826 0.915
True E100 0.835 0.875 0.884 0.826 0.917
False E125 0.823 0.877 0.860 0.826 0.916
True E125 0.835 0.877 0.886 0.826 0.918

Table 3: U1-SAM2Testing Dice Scores for different PEFT-SAM
versions with the most performant U-Net (E100). Raw U-Net
and SAM Dice scores are included for comparison. The bold
values in each row indicate the best performance for each
configuration.

U-Net w/ BBox SAM Version U-Net Only SAM Only U1-SAM2
False Vanilla 0.823 0.841 0.837
True Vanilla 0.835 0.841 0.837
False E65 0.823 0.867 0.835
True E65 0.835 0.867 0.835
False E100 0.823 0.875 0.847
True E100 0.835 0.875 0.847
False E125 0.823 0.877 0.851
True E125 0.835 0.877 0.851

While U1-SAM2 improved upon U-Net’s raw performance in seg-
mentation, particularly in challenging tasks, the final mask quality
sometimes deteriorated compared to PEFT-SAM alone. This deteri-
oration was most noticeable in cases where PEFT-SAM exhibited
lower confidence, with U1-SAM2 introducing spurious "on" pixels
that degraded the overall mask quality.

Appendix C visualisations reveal how U1-SAM2 integration re-
sults in noisy masks, especially in challenging regions where PEFT-
SAM was more accurate. The introduction of these spurious pixels
suggests that U1-SAM2 may be overly sensitive to U-Net’s pre-
dictions, particularly when they diverge from SAM’s output. This
sensitivity leads to an over-correction, resulting in false positives
that reduce the overall segmentation accuracy.

As shown in Table 3, results suggest that U1-SAM2 could en-
hance segmentation accuracy, especially when U-Net predictions
offer beneficial additional insights. However, it still needs further
refinement. The model’s tendency to introduce noise suggests the
need for more sophisticated combination strategies that can better
discern when to trust U-Net’s predictions and when to rely more
heavily on SAM.
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6 SUMMARY OF MAIN FINDINGS
This study evaluated the performance of various Deep Learning
models for MRI intracranial meningioma segmentation, including
SAM, PEFT-SAM, 3D U-Net, U-SAM-Combo, and U1-SAM2.

Vanilla SAM: Despite being pre-trained on non-medical data,
SAM achieved an overall DSC of 0.841, demonstrating its potential
for zero-shot learning in medical imaging.

PEFT-SAM: Fine-tuning SAM with parameter-efficient tech-
niques resulted in a modest DSC improvement of approximately
3.6%. This gain came at the cost of uneven performance across
different scan types, suggesting that while overall segmentation ac-
curacy improved, the fine-tuned model struggled with maintaining
uniformity across diverse imaging conditions.

3D U-Net: Training a 3D U-Net from scratch achieved a DSC of
0.835, comparable to Vanilla SAM. Marginal improvements were
observed with bounding box emulation, suggesting potential for
further enhancement.

U-SAM-Combo: Combining U-Net and SAM outputs using var-
ious strategies revealed that the Weighted method outperformed
others with a peak DSC of 0.918. This method effectively inte-
grated the strengths of both models, particularly in challenging
cases, though it introduced complexity and potential bias through
intermediate evaluations.

U1-SAM2:U1-SAM2 attempted to refine SAM’s predictions with
U-Net insights. While it improved upon U-Net’s raw performance,
it sometimes degraded mask quality by introducing noise and spu-
rious pixels, particularly when PEFT-SAM’s confidence was low.
This suggests that this model may be overly sensitive to U-Net’s
predictions, highlighting the need for more strategies that better
balance model contributions.

These findings, summarised in Table 4, underscore the promise
of integrating and fine-tuning advanced Deep Learning models for
medical image segmentation. The U-SAM-Combo approach, par-
ticularly the Weighted method, shows significant promise, though
careful consideration of model alignment and bias mitigation is
necessary.

Table 4: Comparison of Overall Testing Dice Scores across
Various Models. As seen by the bolded value, the U-SAM-
Combo Weighted model achieves the highest performance
with a Dice of 0.918, significantly outperforming the baseline
Vanilla SAM model. This improvement is likely due to the
weighted combination approach that leverages the strengths
of both U-Net and SAM architectures.

Model Testing Dice
Vanilla SAM 0.841
U-Net w/o BBox 0.823
U-Net w/ BBox 0.835
U-SAM-Combo (Union) 0.886
U-SAM-Combo (Intersection) 0.826
U-SAM-Combo (Weighted) 0.918
U1-SAM2 0.851

7 CONCLUSIONS AND FUTUREWORK
In this study, we aimed to enhance the Segment Anything Model’s
(SAM) segmentation performance of intracranial meningiomas in
3D medical imaging, through fine-tuning and modifying its frame-
work. Our primary research question was whether integrating SAM
with U-Net could improve segmentation accuracy for intracranial
meningiomas. We addressed this question by employing two novel
approaches, U-SAM-Combo, which combines U-Net and SAM pre-
dictions through union, intersection, and weighted combination
methods, and U1-SAM2, which feeds U-Net’s prediction into SAM
as an additional prompt.

Our most notable achievement reveals that the U-SAM-Combo
approach achieved improvements of 4.5% and 7.7% in accuracy over
the baseline SAM model, respectively. This enhancement demon-
strates the potential of integrating SAM into medical imaging work-
flows and contributes valuable insights to the medical SAM com-
munity.

However, we encountered several challenges that highlighted the
need for more substantial computational resources and extended
training periods to achieve significant improvements. In addition,
SAM exhibited limitations in handling huge tumours, where fine-
tuning and adaptations yielded only marginal improvements.

The U-SAM-Combo approach showed considerable promise, con-
firming that combining U-Net and SAM predictions can enhance
segmentation performance. However, the U1-SAM2 model, while
innovative, introduced spurious pixels in certain cases, particu-
larly when SAM’s confidence was low, indicating that this method
requires further refinement.

These results, although modest, underscore SAM’s potential in
medical imaging, and contribute to the growing body of knowledge
within the medical SAM community. While SAM’s capabilities
in intracranial meningioma segmentation were not fully realised
in this research, our work indicates that with more training and
optimisation, SAM could become a valuable tool in medical imaging
applications.

Future work should focus on several key areas to build upon
these findings. Enhancing the full integration of SAM’s bounding
box prompts into U-Net training may yield more robust segmen-
tation results. In addition, exploring the reverse of our U1-SAM2
approach, U2-SAM1, where SAM’s predictions are used as input
guidance masks for U-Net, could also improve accuracy by lever-
aging the strengths of both models in a complementary manner.
Finally, investigating alternative prompting methods, such as point-
based or text-based prompts, may provide further insights into
optimising SAM for various medical imaging tasks.

In conclusion, while our study highlights the promise of SAM
for medical imaging applications, further research, resources, and
collaboration are necessary to fully realise its potential and pave
the way for the model’s broader application in clinical settings.
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10 SUPPLEMENTARY INFORMATION
A VANILLA SAM TO PEFT-SAM VISUALS
Note: The following visualisations use the slice with the largest cross-
sectional area of the tumour. The colour-coding is as follows:

• Green: Correctly identified tumour regions (True Positive)
• Red: Incorrectly identified tumour regions (False Positive)
• Blue: Missed tumour regions (False Negative)

(a) Vanilla

(b) PEFT-SAM

(c) U-SAM-Combo (Union)

(d) U1-SAM2

Figure 11: A 3D Visualisation of our model’s predictions on a
sample for subjective assessment. Each image shows ground
truth (green) and predictions (red). The amount of red indi-
cates prediction accuracy: (a) Vanilla SAM, (b) PEFT-SAM, (c)
U-SAM-Combo (Union), and (d) U1-SAM2. This highlights
how our models have improved from Vanilla SAM as more
red pixels are shaved off, but still imperfect.
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Figure 12: Comparison of Vanilla SAM and PEFT-SAM (E125) on good examples. The figure shows the per-scan predictions for
each modality (t1c, t1n, t2f, t2w), the ground truth, and overall prediction, from left to right. In each grouping, the first row
displays Vanilla SAM results, while the second row shows PEFT-SAM results. Although PEFT-SAM shows improved performance
with fewer false positives, Vanilla SAM’s predictions are already quite good in some cases, and tuning has a minimal effect
where predictions are accurate.
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Figure 13: Comparison of Vanilla SAM and PEFT-SAM (E125) on challenging examples. The figure shows the per-scan predictions
for each modality (t1c, t1n, t2f, t2w), the ground truth, and overall prediction, from left to right. In each grouping, the first row
displays Vanilla SAM results, while the second row shows PEFT-SAM results. PEFT-SAM shows improved results with fewer
false positives, especially on complex edges and large tumours. However, the per-scan type deterioration is evident, especially
t1n, though it is clear overall performance has improved relative to Vanilla SAM.
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B 3D U-NET VISUALS

Figure 14: Comparison of 3D U-Net (E100). The figure shows the per-scan predictions for each modality (t1c, t1n, t2f, t2w), the
ground truth, and overall prediction, from left to right. This figure highlights the U-Net’s precise edge delineation capabilities,
which are notably better than those of Vanilla SAM. The model was trained on all scan types at once, making per-scan
performance less relevant but still shown for clarity. The main takeaway is the U-Net’s ability to achieve precise segmentation,
even for complex tumours.
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C U-SAM-COMBO AND U1-SAM2 VISUALS

Figure 15: Comparison of of U-SAM-Combo and U1-SAM2 models. Each row displays overall predictions of 3D U-Net (E100),
PEFT-SAM (E125), U-SAM-Combo (Union, Intersection, Weighted), and U1-SAM2, followed by the ground truth, from left
to right. This figure illustrates how combining different methods can significantly impact results. The Union and Weighted
U-SAM-Combo methods show the most visually pleasing results, whereas U1-SAM2 exhibits noticeable spurious pixels. The
subjective assessment demonstrates how combining methods can affect performance differently depending on the use case.
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